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We demonstrate the relation of the infrared momentum restrictions of conformal 
field theory with entropy considerations of finite-temperature thermodynamics 
for the 3-state Ports chain. We compute the free energy and obtain the low- 
temperature specific heat for both the ferromagnetic and antiferromagnetic spin 
chains, and find the central charges for both. 
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1. I N T R O D U C T I O N  

The conformal field theory treatment of quantum spin chains at positive 
temperature T deals with systems of size M in the limit 

M - ~  ~ ,  T--* 0, TM fixed (1.1) 

This limit is discussed in terms of a variable q = exp(2nv/MT),  where v is 
the speed of sound. The modular invariant partition function is computed 
in terms of q, and one of the important results ~1'2) is that as q --* 1, the free 
energy per site is given as 

f =  eGs - ~-  T 2 + o(T  2) (1.2) 
o/) 

where c is the central charge as determined from finite-size corrections to 
the ground-state energy 

7~C/: 
Ecs  = Meo -- ~ + o( M 2) ( 1.3 ) 
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However, the limit (1.1) is not the limit of thermodynamics. This limit 
is 

M ~  o% T fixed (1.4) 

Here the low-temperature behavior of the specific heat is obtained by 
letting T ~  0 after the limit (1.4) is taken. 

These two limits will give the same result if there are no additional 
length scales in the problem. In this case the result is obtained (1'2) that the 
specific heat C is 

7~C 
c~Tv r (1.5) 

For the antiferromagnetic 3-state Potts chain, the low-lying order-one 
excitations in the limit (1.1) were used in ref. 3 to compute the partition 
function, and the result (1.5) was obtained. This was accomplished by 
adding up the order-one excitations found from the Bethe equations for the 
model. (4'5) The partition function obtained in this manner is the modular 
invariant partition function of conformal field theory. 

The counting of states in ref. 3 depends on the fact that the momenta 
of order-one excitations not only obey a Fermi exclusion rule P j r  Pk, but 
also have additional exclusion rules: The number of states near e(P)= 0 
diminishes as the number of order-one excitations in the system increases. 
Correct counting of the states, incorporating these exclusion rules, gives a 
partition function which has a central charge smaller than that of fermions. 
In the case of the antiferromagnetic 3-state Potts model, there are three 
kinds of quasiparticle excitations, which, for purely fermionic exclusion 
rules, would give a central charge of 3/2, whereas the actual central charge 
of the model is 1. 

In this paper, we use the thermodynamic limit (1.4) to obtain the low- 
temperature specific heat of the 3-state Potts chain from Bethe's equations, 
using the methods of refs. 6-8. In Section 2, we write the Bethe equations 
for the finite lattice and introduce the completeness rules (9/for Q = 0. We 
find it convenient to study the ferromagnetic and antiferromagnetic cases 
using two different sets of integral equations. In Section 3, we write the free 
energy for the ferromagnetic case in terms of only one integral equation, 
and compute the linear term in the low-temperature specific heat. In 
Section 4, we do the same for the antiferromagnetic chain, this time in 
terms of two integral equations. We obtain the central charge of the 
conformal limit of both spin chains from the linear term in the specific 
heat, using Eq. (1.5). In Section 5, we consider the sector Q = 1. 

In Section 6, we discuss how the counting of states in the finite-size 
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system (3) is incorporated into the discussion in terms of densities in the 
thermodynamic limit. We find that in the thermodynamic limit, the 
counting of states is contained in the entropy, written in terms of densities. 
The densities are related through the thermodynamic limit of the Bethe 
equations (3.1), (4.1), and this relationship corresponds to the way the 
number of available states depends on the number of excitations in the 
finite-size system. These equations become particularly important when 
evaluating the low-temperature specific heat, where we need to consider the 
equations in precisely the limit which corresponds to P-~ 0 in order to 
extract the linear term in the specific heat. 

It is important to note that the 3-state Potts model is the D4 model 
in the classification of Pasquier, (1~ which, by orbifold construction, (11'12) 
has certain sectors of eigenvalues which overlap with the A5 RSOS model. 
From this construction, it is to be expected that the thermodynamic quan- 
tities of the two models are equal as long as the sectors which dominate 
the thermodynamics are common to the sectors which overlap. Indeed, the 
ground states of both the ferromagnetic and antiferromagnetic ends of 
the D4 model are the same as the critical A5 model at the boundaries 
of the III/IV and I/II regimes, respectively. Thus the central charges 
computed for A5 (refs. 13-15) coincide with the central charges of the D4 
model. (16'17) We further note that the classical two-dimensional antiferro- 
magnetic 3-state Potts model, which is critical at T=  0, is equivalent (18-2~ 
to the 3-coloring problem and also has central charge c = 1. (24)̀  

The thermodynamics of the An series was studied in ref. 15, where the 
integral equations for the free energy, the central charges, and order-one 
excitations above the ground state were found. The thermodynamics of 
other affine Lie algebras was also studied in ref. 21. In this paper, however, 
we obtain different sets of integral equations, which display a more direct 
relationship to the modular invariant partition function discussed in ref. 3 
for the antiferromagnetic chain and in ref. 23 for the ferromagnetic chain. 
The fact that there are different sets of integral equations for the model is 
related to the fact that the modular invariant partition function can be 
expressed as sums over different sets of quasiparticle excitations. (22) 

2. F O R M U L A T I O N  

The three-state Potts Hamiltonian is 

2 M 
g ~  "~-"'~ = { Xj  "~- X~j + ZjZYj + I "q- Z~ Zj+ l ) (2.1) 
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with periodic boundary conditions, where M is the number of sites in the 
chain, and the matrices Xj and Zj are 

X ] = I | 1 7 4  ... |174 ""  |  
(2.2) 

Zj~- I (~  I (~  "'" (~ Zjth (~ "'" (~ I 

I is the 3 • 3 identity matrix and X and Z are 3 x 3 matrices with entries 

Xij=(~i,j+ 1 (mod 3), Z 0 =  5i,;a/-1, og=e 2~i/3 (2.3) 

The Hamiltonian with the ( + )  - sign is referred to as the (anti)- 
ferromagnetic Potts chain. It commutes with the spin rotation operator, 
whose eigenvalues are e 2~/Q/3, Q = 0 ,  +__1. The eigenvalues of the 
Hamiltonian (2.1) are derived from functional equations (13'15'25~7) from 
which we find (4) 

E = ; = I  ~ cot i 2 j + ~  x /~ ,  L = 2 ( M - I Q I ) ,  Q = 0 , 1 , - 1  (2.4) 

where the set {2j} satisfy the Bethe equations: 

I sinh(in/12 - )~j)] TM 

: ( - -  1 ) M + I  
sinh(in/3 2k)) 

k = ~ sinh(in/3 + (22 - ).~)) ' j = 1 ..... L (2.5) 

Not all solutions of Eqs. (2.5) correspond to eigenvalues of the 
Hamiltonian (2.1). The equations do not impose sufficient restrictions on 
the set {2j}. There are additional conditions, which ensure that the energy 
is real, postulated from finite-size studies in ref. 9, where the spectrum of H 
was classified. We introduce these conditions by writing (2.5) in 
logarithmic form. The solutions of (2.5) which correspond to eigenstates of 
the Hamiltonian (2.1) fall into five classes, where below 2j is a real number: 

in in 

(2.6) 
2;:2s 2 in in = j + S ,  

The last three always occur in complex conjugate pairs. Since we are inter- 
ested in the infinite lattice limit, the imaginary parts are assumed to be 
exact. We denote the number of each type of root ~ e { + ,  - ,  2s, -2s ,  ns} 
by ms. 
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We rewrite the Bethe equations (2.5) to display explicitly the different 
types of roots (2.6). Let 

sinh(i~/3 - 2) h(~)-~+~) (2.7) 

Then (2.5) become, for e = + or - ,  

[sinh(izt/12 - 2;)]2M 
( - 1)M + [sinh(i~/12 + 27) 3 

m + m _  m 2 s  

k = l  k = l  k = l  

m _ 2s runs  

x Fl h ( ; 4 - , ~ 7  ~) ~ -~* "~ h ( q  - "b ) F[ h( ,~; -  ;v ) h ( 2 7 -  ~j"~*) 
k = l  k ~ l  

(2.8) 

whereas for a = 2s, -2s ,  or ns, the equations for each complex conjugate 
pair are multiplied together: 

sinh(ir~/12 + 27) sinh(i~z/12 + '~2 )A 
m+ m 

h(~j - ~ ) h(a;* - & ) lq  h(Xl - ~ ;  ) h(z;'~* - &- ) 
k = l  k = l  

m 2 s  

h ( 2 j  - 2 k ) h ( 2 ; *  - ,~k~2~*~, 
k = l  

m_2s 

-~ 13 h(;~; - ,~;2s) h(~j~* _ &-2~ ) h(;~ 2 _ &-2s* ) h(;~;~* - ~ ;  ~*) 
k = l  

mns 

. . . . .  2 k ) (2.9) x [ l  h(:q & ) h ( , ~ ; * - & )  �9 "~* h(,~; - , ~  ) h(,~;* - "* 
k = l  

We follow ref. 9 in taking the logarithm of Eqs. (2.8), (2.9). To do this, 
we define the functions G and O~,~ in the following way: 

- 2 i  In [ _+ sinh(i~/12 - 2 f  ) ]  
E sinh(i~/12 + 2 f  )_] 

for a=_+ 

G(2;) = [-sinh(izc/12 - 27) sinh(i~/12 - 2;*)] (2.10) 

- 2/f~ In [sinh(irc/12 + 27) sinh(irc/12 + 2;*)] 

for ~ =  _+2s, ns 
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where f_+2s = - 1 ,  fn,  = - 1 / 2 ,  and f +  = 1. For  ~, fi = _+ 

O ~(2~ - 2~) = - i  In [c~flh(2~ - )~k ~) ] (2.11 ) 

F o r e =  + , f l =  +2s, n s o r c ~ =  +_2s, n s f l =  +_, 

h(2j - 2 k )] (2.12) 

where e+,_2s---e_,2s= - 1 ,  = 1 otherwise. For  a, f i =  +2s, ns 

O~(2~ - 2~) = - / f~  ln[e~r - 2~) h(;o 2 - 2~*) h(22" - 2~) h(22" - ).~*)] 

(2.13) 

where e2s,2s = e_2~,_2~ = - 1 ,  1 otherwise. (Note  that  in ref. 9 the functions 
t~ and O ~  for a = _+2s, ns were defined without  the factor f~. This will 
change the completeness rules somewhat  from those presented in ref. 9, but  
is necessary in order  to have positive densities.) Here, all logari thms are 
taken so that  lira In z[ ~< re, and the functions t~ and O~a are defined so that  

t~(2~) = 0 if Re(2~) = 0 
(2.14) 

O~a(22-  2~) = 0 if Re().~) = Re(2~) 

The logari thmic Bethe equat ions are written in terms of these functions: 

Z ( 2 ; ) =  U -_x_ 1 t~(2;) 1 ~ - - -  o~(,~j - 2 k )  (2.15) 
M 2n 2rtM ~ = ~ ~ ~ +_,§ ns k = l  

where f f  are (half-) integers. We now present the completeness rules for 
the I~. It  is only necessary at this point  to discuss the completeness rules 
for Q = 0. It will be shown in Section 5 that  the Q = _+ 1 sectors are identi- 
cal to this sector in the thermodynamic  limit. The  completeness rules of 
ref. 9 for Q = 0 in the nota t ion  int roduced here become: 

1. I~- and I 2~ are distinct (half-) integers, are chosen from the same 
/-2s h set of m+ + m2~ (half-) integers, and I~- = - k  , where h represents 

a "hole" or missing (half-) integer. Therefore the set { / f  } + {If~} 
fills the interval - 1/2(m + + m2,_ 1) to 1/2(m + + rn2s_ 1). 

2. I~- and I ~  2s are distinct (half-) integers, are chosen from the same 
12sh Again, the set set of m_  +m_2~ (half-) integers, and I ~ - = . k  �9 

{/jr } + {/i -2~ } fills the interval. 

3. Pk" are distinct (half-) integers chosen from a set of 
2m_ + 2m_2~ + m,,s (half-) integers. 

4. The spacing between "available" integers, the set of integers 
{i~} + {I~h}, is 1. 
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We see that + integers correspond to missing 2s integers, and the same for 
- and -2s .  In addition to these rules, there is a sum rule for rn=: 

m+ = 2n . .  + 3 m _  + 4rn - 2s 

m2s + 2rn,~ + 3m 2s "+ 2 m _  = M 
(2.16) 

This sum rule is responsible for restricting the maximum integers I~a x as a 
function of the number of excitations in the system. 

We make the assumption that at large M the rules 1 and 2 imply the 
equalities 

2 f  = -i~2~h' 2j7 = 2j -2*a (2.17) 

This appears to be true from numerical results and has been proven for 
order-one excitations, {s~ and has been shown to be consistent for all 
excitation densities in the thermodynamic limit. 

We now take the thermodynamic limit M --* ao of the Bethe equations 
(2.15), with 2 fixed. When We do this we lose the information contained in 
the rules 1-3 about the maximum integers. We rewrite the functions O=,p 
and G in terms of the real part of 2~, using (2.6), and take the derivative of 
Z(2) with respect to 2 in the thermodynamic limit. We obtain the following 
set of equations: 

1 + 1 
P~ (')~) rt K~12('~) - ~ [K~/3 * (P7  -- p~2S) + Kr~/3 , (p;  _ pZs) 

+ {K~12 + K~,2} * p ; ' ]  

p +2s(•) 1 [Kf/12(2) _ Kg4(2)  ] t ~-~-- 7~ 

1 
- p,,  ) + K; /3  * ( p ;  - pp ) 2~ [K':~3 * (p+ - z ,  + 2~ 

+ - -  n s  + {K~/12 + K~z/12} * Pp ] 

1 
p7~(2) = _ ~ [K~3('~) + K~3(2)] 

1 [1  + --2s+ 2s 
q- '~  ~.(Ku/12+K~/12)*(P;--Pp P ; - - P p )  

+ (K~, + K~/3) * PP~l (2.18) 
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where 

1 1 
Pt ~ = lira , pp ~ -  - lim (2.19) 

Mr  oo M(2zj+ 1 - 26) Mr  oo M ( , ~ 6 +  1 - "~,Ij) 

the convolution �9 is defined as 

f 
o o  

f *  g= dp f()o- I~) g(#) 

and the kernels K+(2) are 

(2.20) 

+ 2 sin 2~ 
K+ (~') - cos~-22n -T- cos 2~ (2.21) 

In writing Eqs. (2.18), we did not make use of the relationship between 
holes and integers (2.17), which imposes a relationship between the 
densities in Eqs. (2.18). The assumption (2.17) implies that when particle 
integers of, say, + are equal to the "hole" integers of 2s, their corre- 
sponding rapidities are equal. Therefore, in light of the definitions (2.19), 
the total densities of + and 2s are equal (and those of - and - 2 s  as well), 
and the particle densities are related in a simple way: 

p+(2)  = p2S(~), p2(2)  = p~-2s(2), p~2S(2)=p?(2)-pp(2) (2.22) 

This allows us to rewrite the density equations (2.18) in terms of three 
independent particle densities. It is convenient for further computation do 
this separately for the ferromagnetic and antiferromagnetic spin chains. 

3. F E R R O M A G N E T I C  C H A I N  

For  the ferromagnetic Hamiltonian, we know from refs. 9 and 5 that 
the independent order-one excitations can be chosen to be + ,  - ,  and ns. 
We therefore choose to rewrite (2.18), using (2.22), as 

6 
p+(2)  = 7r cosh 6~. + K1 * (p+ + pp~ ) - K2 * pp~ 

= I q  �9 (p; + p ; ) - K 2  �9 p7 (3.1) 

pT( ) = K2 �9 (p ;  + p ; )  

where the kernels are 

18 ,~ 3 
KI(,~) - 7t2 sinh 64 ' K2(2) - rc cosh 62 (3.2) 
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The particle densities in Eqs. (3.1) are now independent of each other; 
there are no additional constraints. 

In the thermodynamic limit, the sum rule (-2.16) becomes a relation- 
ship between total particle densities D~, 

m~ /, 

D~ = lim J d2 p~ (3.3) 

However, we find that we do not need to impose the sum rule as an 
additional restriction on the densities in (3.1), as it is contained in those 
equations already. To see this, we take the Fourier transform of the 
first two equations in (3.1) and evaluate at k = 0 .  This gives exactly the 
relationship (2.16) divided by M. 

In ref. 3 the sum rules (2.16) were found to give rise to the infrared 
momentum restrictions, that is, to the diminishing of the number of states 
near P =  0 for the antiferromagnetic case, and thus to exclusion rules 
beyond those of fermions. Here, although we lose information about how 
the maximum integers change as a function of m~ when we take the 
thermodynamic limit, we still retain a restriction between the densities 
which contains some of this information. This restriction will allow us to 
retain the concept of correct counting of states in the thermodynamic limit. 

The free energy is 

F= E -  TS (3.4) 

evaluated at the stationary point with respect to independent particle 
densities, where S is the entropy of a state with fixed densities pp and E is 
the total energy of the state. For large M the entropy is 

S = M  2 d2 ( p ~ l n p ~ - p p l n p p - p ~ l n p ; )  (3.5) 
~ :  +,  ,ns  - -oo 

where Ph = Pt -Pp .  The energy E is the thermodynamic limit of Eq. (2.4): 

E =  m ~ f d2 p~(2) e~(2) - 2M (3.6) 
~ + , - - , 2 s , - - 2 s ,  ns N / / ~  

where e~(2) is the energy associated with a root of type/~: 

e+()o) = + 1 -  2isinh 22 e"S(2) = - 2  \ / - 3 -  4i sinh 42 

2 cosh 22 -T- , , /~ '  1 + 2 cosh 42 
(3.7) 

e_+Zs(2) - - T - 1 - 2 i s i n h 2 2 + _ + l ' i s i n h 2 2  

2 cosh 22 -T- ~/3 cosh 24 
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The energy in (3.6) is not manifestly real However, using (3.1), we find 
that the energy can be reexpressed in terms of only the independent particle 
densities, and depends only on p+: 

2M 

This expression for the energy is manifestly real. Minimizing (3.4) with 
respect to the three particle densities pp+, PT, Pp~, we obtain the free energy 
per site, 

fc~ f =  e0 - T d2 - - 6  ln(1 + e -~+(z)/r) (3.9) 
-oo x cosh 62 

where 

2 f ~  6e2~(2) 4 8 
eo = - ~ +  d2 -o~ zccosh 62 n 3 x//3 -2.81284... (3.10) 

and the densities e ~ are defined as p~/p~p=exp(et~/T), and satisfy the 
nonlinear integral equations 

6 
e+(2) = cosh 6,t T[K~ * ln[(1 + e-~'/r)(1 + e - ' - / r ) ]  

+ K 2 * ln(1 + e-~ ' / r ) ]  

cosh 62 

end(2) = TK2 * [ln(1 + e-~+~ + e-~-(")/r)] 

(3.1i) 

The functions e ~ are also referred to as dressed energies. Note that (3.11) 
represents only one integral equation for e +, since e-  is simply related to 

+, and the equation for e,s is not an integral equation, as en, does not 
appear on the right-hand side. 

At fixed 2 and T = 0 ,  we get from (3.11) 

6 
e~-(2) = cosh 62, e o = e ; ~ = 0  (3.12) 

which are the order-one excitation energies found in ref. 5 for the 
ferromagnetic chain. The free energy per site in this limit is f = e0, which 
is the ground-state energy found in refs. 28, 29, and 4. 
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The linear T term in the specific heat C is obtained from the low- 
temperature expansion of the free energy, or the entropy (3.5): 

0 s  
= T - -  (3.13) C =  - 2 ~ -5  ~T 

We find the linear term in the specific heat by computing the O(T) term 
in the low-temperature entropy. 13c~32'~5~ As T~O, e+(2)/T scales as 
1/(Tcosh 62), which makes no contribution to the integral (3.9) except 
when 2,--O(~ in T). We rescale Eqs. (3.11) by making the change of 
variables 2 ~ 2 -  ~ In T and consider Eqs. (3.11) at large 2 and small T. We 
define, at this range of variables, r  T)/T. The integral 
equations become 

~b+(2) - 12e-6;~ K 1 * ln[(1 + e-~+)(1 + e - ~ - ) ]  - K 2  * ln(1 + e  -~"~) 

O - ( 2 ) ~ - - K l , l n [ ( l + e - r  r  -~') (3.14) 

r "~//2 * ln[(1 + e ~+)(1 + e - ~ - ) ]  

Differentiating (3.14) with respect to 2, we obtain 

d~b + _ 2 •  r r + ~b'____~] r 
d2 ~ L l + e  ~+ 1 + e r  + K 2 * -  1 + e ~'~ 

~)t -- ~ t n s  
dr r  + ~ ] + K z * - -  
d2 [_ 1 + e ~+ 1 + e r 

de"' [ r  r  ] 
-K2  * + - - - - '~ -  / 

d2 L 1 + e ~+ l+e '~  1 

(3.15) 

where r = dr 
We rescale Eqs. (3.1) in the same way. Let fi~(2)= p ~ ( 2 -  ~ In T), and 

recall that p~ = p~/(1 + e~/r). Then 

~t+(2)=12re-6~+K1, ( P_.___z__~ + Pt___2_--)_K2 , P__..__Lt 
\ l + e  r 1 + er  l+e  ~'~ 

/~7(2) = K1 * + --Kz * eO,~ 
\ l + e  ~ l + e  - /  1 +  

( ~+ \ 
~'*(2) --- K, �9 + ] - / 
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Comparing Eq. (3.16) to (3.15), we see that 

T d(~ +- 1 . . . .  T dO ~ 1 
P+ = - 6rt d2 1 + e r PP - -~  d2 1 + e ~ 

(3.17) 

The entropy can be evaluated in this limit. The 2--, oo and 2 ~ -oo  
limits make the same contribution to S (and f) .  Therefore we write 

foo 
S - 2  Z d2 {~5] ln(1 + e~) + t~h~ ln(1 + e-O~)} 

f l=  -F, - - ,ns  --00 

= 2 •  n + ( _ ~ ) d ~  g(q) ) -  _(_oo)d(~ g(O) ~r g((J) 

(3.18) 

where 

l n ( l + e  ~) l n ( l + e - Q  (3.19) 
+ l + e - +  

The limits ~b(_ oo) are found from Eqs. (3.14). In these limits, the integrals 
can be performed by taking the log out from under the integral sign, and 
integrating only the kernel. Let ~ denote the asymptotic value under con- 
sideration, ~b(2 = ___ oo). Then, for 2 = o% we obtain a system of equations 

~+ = ~ -  = _ 1  ln [ (1  + e -~+)(1  + e - '~ - ) ]  -- �89 ln(1 + e -~'"~) 
(3.20) 

~"~ = �89 ln[(1 + e-a+)(1 + e -a - ) ]  

Therefore the upper limits of Eq. (3.18) are 

~b+(~) =~b-(m) = - l n 2 ,  ~b"~(~) = In 3 (3.21) 

At 2 =  - o %  ~+ = ~ ,  and 

= -�88 ln(1 + e -a- ) _ �89 ln(1 + e -a ' )  
(3.22) 

~n~ = �89 § e-a- )  

and thus the lower limits in (3.18) are 

~b+(-oo) = oo, ~ b - ( - o o ) = - l n  I ~ - ~  ] 

~ns(-- OO) ~" In [ ~  1 
(3.23) 
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We show in the Appendix how to express the integral (3.18) in terms 
of dilogarithms. Using the identities described in the Appendix, we find 
that in the low-temperature limit, 

4~T 
S ~  - -  (3.24) 

45 

and from (1.5) we see that, with v =  3, (s) the central charge c=4/5 .  This 
is the central charge of the well-known conformal limit of the 3-state Potts 
chain (14'33'34) computed in the limit (1.1). This verifies that the limits (1.1) 
and (l.4) smoothly connect together, and there are no additional length 
scales in the problem. 

In the calculation above, we find that, although in the zero- 
temperature limit the energies ~-, e ns vanish, they contribute to the low- 
temperature specific heat, i.e., the functions ~b-(2), ~b"s(2) do not vanish. 
This is a manifestation of the feature seen in ref. 5, that although the energy 
can be expressed, as in (3.8), in terms of only p+, the number of states e s 

I t s  with energy E depends on p~, and therefore on p~- and p p ,  as it depends 
on m_,  mns in ref. 5. In our case, the densities pp,  pn~ enter the expression 
for the free energy via the entropy S, which counts the states. Computation 
of the specific heat at low temperature depends sensitively on correct 
counting of states, as was seen in ref. 3 for the antiferromagnetic case. Note 
that from the counting rules of ref. 9 and from Eqs. (3.1) the number of 
states near P = 0 increases as the number of excitations increases. This 
causes the central charge to be larger than 1/2, the value we would expect 
if the excitations p+ were fermions. 

4. ANTIFERROMAGNETIC  CHAIN 

To find the low-temperature behavior of the antiferromagnetic chain, 
we rewrite (2.18) in term of the _+ 2s, ns  densities, which we know to be the 
order-one excitations for this Hamiltonian.(9'5'3) Equations (2.18) become 

3 1 
p+ZS'2) = -  t 

w/2 cosh 32 T- 1 7[ 
e., �9 + p ; 2 . ' ) - k . ,  �9 ppS 

3 ptS()~) K2 * (p2ps + p;Zs)  _ 2/~1 , pnps 
cosh 32 

(4.1) 

where the kernels are 

3 6 cosh 32 
K1(2) -Kz (2) = (4.2) 

27z cosh 32' x/~ ~ cosh 62 
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Note that, from these equations, in the antiferromagnetic case the density 
of available states always diminishes with increasing particle densities. This 
was seen in refs. 9 and 3, where the number of available states decreases as 
a function of m2~, m_2,, m,s. 

The entropy in terms of these densities looks the same as (3.5), but 
now we sum over the three independent densities e = +2s, ns. We also 
express E in terms of the _+2s, ns densities. Minimizing the quantity (3.4) 
with respect to the three particle densities p~, p-2S, p,s now gives the free 
energy in terms of these densities: 

~3 ln(1 + e -~2~(~)/r) 

f =e~ + T f 2  d21.rc(x/-~cosh 32_ l) 

3 ln(1 + e -~ :s,,wr) 3 ln(_l + e -''(z~/r) 

+ re(V/2 cosh 32 + 1) + rc cosh 32 J (4.3) 

where 

1 8 f ~  
eo = eo + ~7 d2 

- - o o  cosh 62(xf2cosh 3 2 -  1) 

8 2 
= 3 --  + - = 2.097... (4.4) 

3v /~  rc 

and the e ~ satisfy the integral equations 

3 /3-+ 2s(2) 
- x/2 cosh 32T 1 

+ T{K" 1 * In[(1 + e-dS/r)(1 + e-~-~/r)] + Kr2 * ln(1 + e-"/r)} 

3 
e"~(2) cosh 32 (4.5) 

+ T{K2 * ln[(1 + e-~2'/r)(1 + e- ' -~ / r ) ]  + 2R1 * ln(1 + e-e"/r)} 

At T =  0, we see from (4.5) that 

3 3 ~2s  = , e0ns = (4.6) 
x//-2 cosh 32 ~ 1 cosh 32 

and from (4.3) the free energy is f =  eo- These are the order-one excitations 
and ground-state energy for the antiferromagnetic Hamiltonian found in 
refs. 28 and 5. 
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Again we compute the low-temperature limit of the entropy, but now 
we rescale the integral equations by changing variables to 2 ~ 2 - � 8 9  In T. 
Defining ~U(2) - 8(2 - �89 In T)/T, we have 

3 e 3). ~b2~=~b-2s--- 2 x~--~ - + T{K~ * ln[(1 +e-~ +e-~  

+ /s * ln(1 + e-~ 

~b "~ - 2 x 3e -3~ + T{K2 * ln[(1 + e-~ + e -~  2,)] 

+ 2K1 * ln(1 + e -~  

(4.7) 

so that 2s and - 2 s  are symmetric in this limit, which was a feature seen 
in ref. 3. Again, differentiating (4.7) with respect to 2 and comparing to the 
density equations (4.1) rescaled as 2--* 2 - �89  T, we see that 

T d~ ~ 1 ~ = 2s, -2s ,  ns (4.8) 
P~= 3re dR" l + e ~B' 

The entropy is calculated as in (3.18). From (4.7) we find the limits 
~(_+oo), 

~ 2 s ( -  oo) = ~ - 2 s ( -  oo) = ~ " ~ ( -  oo) = oo 

~b-2S(oo) = ~bZs(oo) = In 2, ~b"(oo) = In 3 
(4.9) 

The entropy is 

8In 3 
(4.10) 

which, using the dilogarithmic identities in the Appendix, gives 

2nT 
S "~ (4.11) 

9 

This, with v=3/2 ,  (5) gives a central charge c =  1, which is the central 
charge of the conformal limit of the model. (2~ is) Again, this verifies that the 
limits (1.1) and (1.4) commute, and there are no additional length scales. 
We see that the fact that p~ tends to decrease with increasing p~ causes the 
central charge to be smaller than the value 3/2 one would expect for pure 
fermions. 

822/71/5-6-6 
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5. Q = + I  

In the thermodynamic limit, quantities which are not of order M are 
irrelevant to the calculation. Therefore, we do not expect the value of Q to 
affect the thermodynamic equations. This is indeed the case. 

In ref. 9 the counting rules for Q = _+ 1 were found. It  was shown that 
the counting rules depended on the value of the numbers m + + and m_ +, 
where 

m + + - - m  + = 0 ,  +1  (5.1) 

Again we note that this difference is not of order M and we do not expect 
it to change the thermodynamic equations. The sum rules (2.16) for this 
sector are modified to 

rn+ =2mn~+4m_2s+m + +m++ 

M--1  =m2~+2mns+3m 2s+m_+ +m++ 
(5.2) 

This is only different from the Q = 0 sector by a term of order one, due to 
Eq. (5.1) and the fact that m_  + = m . Therefore to order M, the sum rules 
are identical to (2.16). 

For  m + + - m  + = +_1, the completeness rules for Q = I  are the 
same as for Q = 0. For  m+ + -  m + = 0, there is spectrum doubling: The 
integers I 2s are shifted from those of + by +_ 1/2, and those of - 2 s  are 
shifted from I 7 in the same way, both signs giving the same energy level. 
The shift does not affect the thermodynamic limit of Eqs.  (2.t5). The 
spectrum doubling gives rise to an additive term of order one in the 
entropy (which counts the number  of states). Since the entropy is of 
order M, again this term is not relevant in the thermodynamic limit. We 
conclude therefore that this sector is identical to Q = 0. 

In ref. 3 the difference in counting rules for the sectors Q = + 1 gave 
rise to different branching funtions in the modular  invariant partition 
function from those of Q = 0. However, each term in the partition function 
gives the same specific heat, due to the modular  invariance property. The 
specific heat is found from the limit q -~ 1 of the partition function of ref. 3. 
However, the partition function is invariant under modular  transforma- 
tions, where, if q=exp(2rci~), the trangformation r ~ - 1 / z  leaves the 
partition function invariant, so the specific heat is obtained from the q--* 0 
limit of the partition function. The same transformation sends each 
branching function into a linear combination of all other b ranch ing  
functions. Therefore, each branching function has the same q ~ 1 behavior. 
In the thermodynamic calculation we do not see this difference between the 
sectors Q = 0 and Q = +_ 1. 
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6. D ISCUSSION 

In ref. 3 the order-one excitations (4.6) were used to compute the 
partition function of the antiferromagnetic chain in the limit (1.1). This is 
identical to the modular invariant partition function of the conformal limit 
of the model (17'35) and so gives the same specific heat as (4.11). For the 
computation in ref. 3 it was necessary to consider the way the maximum 
integer I~a x of the finite-size system in (2.15) changed with the number of 
particles in the system. This is because those integers correspond to 
energies close to zero, e(P),,~ O, or in the language used here, the large-2 
behavior of the energies, which is the region which contributes to the 
specific heat at low temperature. The maximum integers vary, at finite M, 
as more particles are added to the system. In ref. 3 this phenomenon was 
referred to as an infrared momentum restriction. This represents counting 
rules for the excitations beyond the fermionic exclusion rule, and is the 
phenomenon responsible for the central charge being different from that of 
fermions. In the case of the antiferromagnetic chain discussed in ref. 3, the 
infrared restriction was repulsive: fewer states were available as the number 
of excitations was increased than would be available for fermions. In the 
case of the ferromagnetic chain, both repulsive and attractive infrared 
restrictions are present, but the total infrared momentum restriction is 
attractive. 

In the thermodynamic limit, we discard the information about the 
maximum integers I~. Nevertheless, the integral equations (4.5) contain 
the information about the way the density of available states depends on 
the particle density, represented by the density equations (4.1). This infor- 
mation enables correct counting of states, using the entropy. We see that 
this information gives the same specific heat as the counting of ref. 3, but, 
as we saw in Section 5, does not show the difference between the different 
Q sectors. 

When computing the low-temperature specific heat, the region of 2 
which contributes to the free energy as T-~ 0 is the 2 ~ ~ In T limit in the 
ferromagnetic case, and the 2 ,,~ �89 In T limit in the antiferromagnetic case. 
This limit is the P ~ 0  limit, 15) which corresponds to the lowest-lying 
order-one excitations in ref. 3. The careful counting of states there is 
paralleled in the computation here by the rescaling of the integral equations 
and the density equations in the limit T ~  0 and 2 ~  Go. 

Finally, we note that these computations are related to the thermo- 
dynamic Bethe ansatz method of ref. 36, a point which is discussed in some 
detail in ref. 22. 
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APPENDIX.  EXPRESSION OF ENTROPY V IA  D ILOGARITHMS 

The Rogers dilogarithm is defined a s  (37) 

1 x~ (!n(l_f_-f) ln(f)~l  - f ]  (A.1) L(x)= - ~ a  ~ df + 

Making, a change of variables in the expression for the entropy (3.18) to 
f =  1/1 + e ~, we can express the entropy (3.18) in terms of L(x), ~ 

We use the identity on Rogers dilogarithms (32) 

n-2 (sin2(rc/n) ~ 2(n--3) 
Y, L \sin2(kr~/n) j - n L(1) (1.3) 

k = 2  

where L(1)= rc2/6. (38) Using this identity with n = 6, we find that 

2L(1/3 ) + L(1/4) = L(1 ) (1.4) 

and, with n = 5, we see that (38) 

2 L  = 2 - -  ( 1 . 5 )  
15 

Therefore Eq. (A.2) gives 

S~-3-s L = 45 (A.6) 

In the antiferromagnetic case, we again use (A.4) with n=6, and 
entropy is 

4 T [ 2  L 1 4T 21tT 
3rt[_ ( ~ ) + L ( 4 ) I = 3 7 L ( 1 ) -  -9 (A.7) S 
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